Copper Slag

Alloy name: Copper Slag
Diagram No.: 642
Type of diagram: TTT
Chemical composition in weight %: 2.0% CaO, 35.0% SiO2, 4.6% Al2O3, 1.5% MgO, 37.9% TFe, 0.83% Cu, 0.59% S, 0.96% Zn, 0.14% As, 0.05% Cr, 0.15% Pb, 7.6% magnetite
Alloy group: Slags
Note: TTT diagram of the copper slag. From this diagram, it can be clearly understood that magnetite was precipitated before hematite under isothermal transformation. The initiation time of crystallization increased with decrease in holding temperature.
In recent years, while Cu production has increased, ore quality has degraded. Consequently, copper smelting industries generate large amounts of byproducts and wastes, including slag. However, the use of these byproducts and wastes involve high costs and most of the wastes are discarded in landfills after processing. In some cases, these byproducts and wastes contain valuable components, which may be profitable to recover. In other cases, toxic or hazardous chemicals are required in the treatment of these wastes to prevent their release. Therefore, the processing of byproducts is a significant activity, which determines the profitability of copper production facilities. Magnetic separation of precipitated magnetite (Fe3O4) crystals in the copper slag is one of the most effective methods to recover iron resources. It is preferable to convert molten fayalite slag to magnetite during the cooling of the slag with oxidation. With a time-temperature-transformation (TTT) diagram, the microstructure of the slag obtained after heat treatment could be estimated through a designed cooling path according to the purpose for which the slag is to be used. Slag recycling, mainly the recovery of the precipitated magnetite crystals, will be enhanced by controlling the slag cooling conditions.
Reference: Not shown in this demo version.

Transformation Diagram

Price: 30.00 US $
Buy Online Transformation Diagram

Other Steel Data links
Carbides in Steel
Etchants Database
Hardenability Diagrams of Steels
Macro Defects in Steel
Non-Metallic Inclusions in Steel
Tempering Diagrams of Steels
CCT and TTT Diagram Calculating Service
Transformation Diagrams of Non-Ferrous Alloys

Disclaimer: The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make his own evaluation and are not intended as warranties, either express or implied, of fitness for these or other puposes. There is no representation that the recipient of this literature will receive updated editions as the become available.

Copyright © 2019 by Steel Data. All Rights Reserved.